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Abstract 

 

In this paper we develop an analytical model of Knudsen layer at the ablative wall taking into account the 

temperature gradient in the bulk gas. The region of validity of the existing models and effect of the 

temperature gradient on the Knudsen layer properties are calculated.  
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The formation of the Knudsen layer, the non-equilibrium (kinetic) layer, near the vaporizing surface 

and subsequent ablation is of great interest for a number of applications such as capillary discharges [1,2], 

plasma thrusters [3,4], high-pressure discharges [5], vacuum arcs [6], electroguns [7]  and laser ablation 

[8]. 

Anisimov [9] was the first to consider details of the vaporization process for a case of vaporization of a 

metal exposed to laser radiation. He used a bimodal velocity distribution function in the kinetic layer, 

assuming no absorption of laser radiation in the ablated gas. The primary result of his work was the 

calculation of the maximal flux of returned atoms to the evaporating surface, which was found to be about 

18% of the flux of vaporized atoms. This result was obtained under the assumption that the atom flow 

velocity is equal to the sound velocity at the external boundary of the Knudsen layer and the temperature of 

the gas in the equilibrium region (beyond Knudsen Layer) is constant, i.e. no conductive heat flux to the 

ablative wall surface.  

 However, in many physical situations, the vapor leaving the non-equilibrium layer cannot be 

described by using a speed of sound approximation. For example, in ablative capillary discharges, the gas 

motion in the capillary chamber is not "free"; it is restricted by the capillary wall, leading to a more dense 

gas (plasma) in the discharge volume and therefore, larger backflux to evaporating surface and smaller flow 

velocity at the outer boundary of the Knudsen layer.    

Beilis [10,11],  was the first to consider ablation into a dense plasma. He studied the case of metal 

vaporization into discharge plasmas in a vacuum arc cathode spot. He concluded that the parameters at the 

outer boundary of the Knudsen layer are close to their equilibrium values and that the velocity at the outer 

boundary of the kinetic layer is much smaller than the sound velocity.  

Later these models were applied for the case of dielectric ablation into the discharge plasma in the 

capillary discharge conditions [12, 13] and for the case of strong plasma acceleration [14]. All those 

analytical models neglected the conductive heat flux to the ablative surface. This can be significant because 

the temperature in the plasma core is assumed in the models to be much greater than the temperature of the 

ablative surface. In particular, neglecting the conductive heat flux leads results in the calculated gas 

temperature at the outer boundary of the Knudsen layer to appears to be smaller than the temperature of the 

evaporating surface. This consequently leads to the heat flux through the Knudsen Layer being directed 
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upward to the plasma chamber.  Therefore, neglecting the conductive heat transfer in the Knudsen layer 

leads to an inconsistency in all the models [1-7] where the gas (plasma) temperature is larger than the 

surface temperature of the ablative wall. 

However, it is worth noting, that in the case where the external heat flux to the ablating surface is 

larger than the conduction heat flux, the temperature of the ablating surface might be larger than the gas 

temperature at the outer boundary of the Knudsen Layer. This is the case for the example in [9], where an 

externally applied laser radiation source heats the ablating surface but for which the gas (plasma) is 

transparent. 

Recently many numerical models of evaporation processes were developed based on Monte Carlo 

simulation [15-17] and numerical solutions of the Boltzmann equations [18], describing the kinetic layer 

without any a prior approximation of gas velocity function distribution in that layer. However, as Rose [19] 

has demonstrated the models using his and Anisimov’s bimodal velocity distribution functions in the 

kinetic layer give results virtually co-incident with numerical solutions of the Boltzmann-Krook-Welander 

equation for evaporation of a monatomic substance with condensation coefficient equal to unity. As shown 

in [15-17], analytical models also are in good agreement with Monte Carlo simulation.  

Ideally Monte Carlo simulations should be able to self-consistently describe the conductive heat flux to 

the ablating surface.  However, this will require extending the analysis beyond the Knudsen layer region, 

making it computationally intensive. Thus, improving the analytical models by including heat conduction 

into consideration is an important step in developing practical (computationally efficient) solutions for 

modeling of evaporation processes and plasma discharges coupled to ablative processes, and in improving 

our physical understanding of the Knudsen layer.  

We would also like to point out the recent paper by Bond and Struchtrup [20] in which the authors 

have included the conduction heat flux in their analytical model of water evaporation. This is a generalized 

Hertz-Knudsen model, which does not consider the vapor velocity distribution function in the Knudsen 

layer but uses the condensation and evaporation coefficients (probabilities) at the boundaries of Knudsen 

layer to take into account backflux effect (due to collisions) in the Knudsen layer. However these 

coefficients can have a complex dependence on the evaporation conditions such as vapor pressure, 

temperature, surface conditions, incidence angle, etc., and are usually determined experimentally or by 
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fitting the model with experimental data. In the case of dielectric ablation into plasma, where the ablation 

parameters vary among a wide range of temperatures and pressures, these coefficients are not 

experimentally measured. The analytical models using bimodal velocity distribution functions, such as the 

one described here, self-consistently calculate the backflux and implicitly assume a condensation 

coefficient of unity. As it has been mentioned above, they describe the ablation process with reasonable 

approximation, and the effect of variable condensation coefficient is not considered here.    

In this paper we develop an analytical model of the Knudsen layer by considering an appropriate 

boundary condition in the kinetic formulation that takes into account the temperature gradient. The region 

of validity of the existing models and the effect of the temperature gradient on the Knudsen layer properties 

are calculated. The main impetus of this Communication is to study the effect of the thermal conductivity 

on the Knudsen layer formed near the ablated surface. This analysis is based on the premise that thermal 

conductivity (the temperature gradient) in the gas bulk can be taken into account in the velocity distribution 

function at the outer boundary of the Knudsen layer. In this paper we use such a function obtained by 

Chapman-Enskog expansion method for solving Boltzmann equation [21] based on assumption that the 

molecular mean-free-path is much smaller than characteristic scale of the temperature change. Thus, our 

model is limited to relatively small values of the temperature gradients. 

Following Anisimov’s method [9], let us write the velocity distribution function in the kinetic layer 

with the evaporating surface in the form, Fig.1 

[ ] )()(1)()(),( VfxVfxVxf ub

rrr
⋅−+⋅= δδ  ,     (1) 

where 

 

( )
  

0    ,   
)(

exp1

0                                                 ,  exp1

)(

2
1

2223

1
1

2
3

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++−
−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅⋅

>−⋅⎟
⎠
⎞

⎜
⎝
⎛

=

x 
zyx

x

b

V
V

VVuV
V

n

VV

Vf

π
β

π
r

 (2) 

  



 5

 ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++−
⋅

−
⋅

⋅
−⋅⋅= T

dx
d

V
VVuV

V
uVVVVfnVf zyxxT

Mu ln
2
5)(

1)()( 2
1

222

1

1
1 ν

rr     , (3)  

 [ ]
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ++−
−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
= 2

1

2222/3

2
1

)(
exp1)(

V
VVuV

V
Vf yyx

M π

r  .   (4) 

Here fb is the velocity function distribution at the inner boundary of Knudsen layer (at the ablative surface) 

with Maxwellian vaporization function for Vx > 0  and a shifted “backflux” Maxwellian function of the 

particle for Vx < 0 describing the particles incoming to the surface from the gas, where x-axis is normal 

directed to the wall from the gas chamber; fu is the Chapman-Enskog velocity distribution function at the 

outer boundary of the Knudsen layer that takes into account the temperature gradient and directed velocity 

[21] above the Knudsen layer, as shown in Figure 1; T0=VT
2/(2m) is the temperature of the ablated surface; 

ν is the collision frequency depending of the temperature and density of the gas; δ(x) is an unknown 

function that satisfied the conditions δ(0) = 1 and δ(∞) = 0. The number density is normalized on the 

equilibrium vapor number density corresponding to the surface temperature T0 and all velocities are 

normalized on VT.  The expression for fb takes into account the fact that the vaporized atoms have 

Maxwellian distribution at a temperature equal to the surface temperature [22] and also assumes that the 

number density of the evaporated atoms is equal to a half of the equilibrium vapor number density at this 

surface temperature that is a reasonable approximations used in all previous bimodal velocity distribution 

functions models [9 – 17]. It should be noted that the Anisimov’s model [9] (as well as all other existing 

models) employed shifted Maxwellian function at the outer boundary of Knudsen Layer ignoring, as 

mentioned above, the conduction heat transfer to the ablative surface, i.e. temperature gradient at the edge 

of the Knudsen layer.  

Assuming the conservation laws of mass, momentum and energy hold at all times within the 

discontinuity region, through the Knudsen layer, as it has been assumed in all previous models [9-14] 

(quasi steady state approximation within the Knudsen layer), the following integrals are defined: 
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where values of C1, C2, and C3 obtained at the outer boundary of the Knudsen layer where δ is equal to 

zero, and the mass, momentum, and energy fluxes are  

10 CVnmM Tx ⋅⋅⋅=  ,       (5b) 

2
2

0 CVnmP Tx ⋅⋅⋅=  ,       (6b) 

3

3

0 2
CVnmE T

x ⋅⋅⋅=  .       (7b) 

where Ex consists of the two parts: the conduction heat flux and the enthalpy flux of the gas moving with a 

directed velocity, Eq. (7a). Taking into account that integrals C1, C2, and C3 are preserved through the 

Knudsen layer and they should be independent on δ(x), we obtain the following equations corresponding to 

C1, C2, and C3: 
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Equations (5), (6), (8) and (9) are identical to the corresponding mass and momentum conservation 

equations obtained in [10-17] while Eqs. (7) and (10) differ from the corresponding energy conservation 

equations [10-17] by the temperature gradient term, which is responsible for conduction heat flux to the 

ablative surface. 

Let us introduce a thermal conduction parameter τT  
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where λmfp = (VT·V1)/ν is the gas mean-free-path at the outer boundary of the kinetic layer and δxT = 

[d(lnT)/dx]-1 is the characteristic gradient length. Condition (11) is needed for the Chapman-Enskog 

expansion method and Eq. (7a) to be valid, as explained earlier. In the case of small u, Equations (8) - (10) 

can be simplified to the following form 
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As we can see, for u = 0 (in which case there is no ablation) and for τT > 0, the temperature and density at 

the outer edge of kinetic layer are correspondingly larger and smaller than 1; it is as expected, since the gas 

bulk region has a higher temperature than the wall surface and the total conduction heat flux is assumed to 

be directed to the wall (τT > 0). This temperature jumps between the solid surface and the Maxwellian gas 

at the outer edge of the kinetic layer is a very well known phenomenon in gas dynamics, see for example 

review [23]. 

Assuming that ablation process is due to only by the gas thermal conduction (no external heat source is 

applied to the ablative surface), the boundary condition at the ablative surface can be written as 

 vapx
wall

wallx M
dx

dTE Φ⋅=⋅−− κ   ,    (15) 

where κwall is thermal conductivity of the wall, and Φvap is evaporation heat of the wall material, -Ex is the 

total energy flux through the Knudsen layer incoming into the ablative wall, Eq. (7b), and Mx is the mass 

ablation rate, Eq. (5b); the negative sign in front of Ex is due to the x-axis being directed from the wall into 
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the gas chamber. Assuming no heat loss in the bulk of the wall2, the boundary condition at the ablative 

surface is reduced to:  

 vapxx ME Φ⋅=−  .       (16) 

Thus, for a given ablative surface temperature and corresponding equilibrium vapor pressure and number 

density, and given heat conduction parameter τT, Eqs. (8) – (10) and (15) can be solved relative to variables 

n1, V1, u, and β. The total ablation rate and the heat flux to the ablative wall (Eqs. (5b) and (7b) can then be 

computed. The dependences of n1, V1, and backflux (the total flux of particles incoming to the ablative 

surface from the gas) on the τT and for a specific example of polyethylene wall are presented below. 

Figure 2 shows the calculated parameters of the Knudsen layer vs. τT for the case of thermal 

conduction heating of the ablative polyethylene wall with the polyethylene surface temperatures of 650 and 

800 K, Eqs. (8) – (10) and (16); the evaporation heat has been taken as 3.6·106 [J/kg] and equilibrium vapor 

pressure equal as P = 105·exp(5565.22·[1/453 -1/T]) [24], where the pressure is in Pascal and temperature is 

in Kelvin. One can see that u, T, backflux, and n1 are weak functions of temperatures in this temperature 

region, although their equilibrium vapor pressures differ almost in five times. As it has been mentioned 

above, we cannot extend the obtained results of Figure 2 for higher τT, because the Chapman-Enskog 

expansion method is valid only for τT << 1. In this limit, Eq. (16) can be simplified to the following form 

  T
s

vap u
Tk

m
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where m is the average atomic mass of polyethylene composition, and Ts is the polyethylene surface 

temperature. Expressing u as a function of τT, Eq. (17), and substituting it into Eqs. (12) and (14) and then 

into equation for normalized backflux at the ablative wall, 

  ππ ⋅⋅−≈⋅⋅⋅−=− 2121 1 unuF fluxb  ,   (18) 

yields the explicit relationships between n1, T = V1
2, u, Fb-flux and τT. Comparison of this approximate 

solution and the “exact” solution obtained from the solution of Eqs. (8)-(10) is shown in Fig. 3, leading to 

the conclusion that approximate solution gives satisfactory results for τT < 0.05.  

                                                 
2This can be the case of a “boiling wall”, where all heat incoming into the wall is spent on vaporization. 
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We also would like to point out that in the case of thermal conduction, u is small and cannot reach 

sonic condition. Otherwise, Ex would be positive, Eqs. (7a) and (7b), meaning that the total energy flux 

would be directed not to the ablative surface but upward into the gas chamber, contradicting the model 

assumptions. 

 In the case where the ablating surface is heated by an additional (external) heat source, for example by 

laser radiation [9], Eq. (16) can be rewritten as  

  vapxextx MEE Φ⋅=−−   ,   (16’) 

where Eext is an external heat flux to the ablative surface. With an increase in Eext the ablation rate increases 

and, if Eext becomes much larger than conduction heat flux, we may drop the conduction heat term from the 

velocity distribution function (Eq. (3)), recovering the previous models [9-14]. Figure 4 shows V1 and u as 

functions of the ratio of an external heat flux to the total heat flux, q = Eext /(Eext + Ethermal) for the ablative 

polyethylene wall with the polyethylene surface temperatures of 800 K and for τΤ = 0.01, 0.1, and 0.3; the 

calculations have been performed up to sonic conditions with γ = 5/3. As one can see with a decrease in τT 

and an increase in q, the distributions of V1 and u are converging to the case of τ  = 0.  

The effect of heat conduction in the case of an external heat flux can also be calculated, following [10-

14], as functions of of α = u/V1 for different τT, Eqs. (8) – (10); here, the variation of α indicates the 

magnitude of the external heat flux compared to the conduction heat flux (as α and the flow velocity 

increase up to sonic condition, there can be no heat conduction to the wall). The results of these 

calculations are shown in Figure 5. As one can see at small α  the effect of thermal conduction is important, 

and with an increase in α, the effect of thermal conduction decrease, Ex increases and changes sign 

(becomes positive meaning that the total energy flux is directed upward, Fig. 1, into the gas chamber, see 

Eqs. (7a) and (7b)) and the temperature and density plots are converging to the case of τΤ  = 0. As one can 

see, T1 and n1 decreases with an increase in α (with an increase in directed velocity u), Fig. 5, that can be 

explained by expansion of the dense ablated gas stream in less dense gas surrounding. It is worth noting, 

that such a decrease in T1 and n1 leads to a decrease in the thermal heat conduction at a given τΤ  too, see 

Eqs. (7a) and (11). 
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In summary, a model of the Knudsen layer near the ablated surface in the case of surface heating by 

the adjacent gas by virtue of thermal conductivity was developed. Previously existing models were not able 

to describe this physical situation due to neglecting effect of the temperature gradient on the velocity 

distribution function in the gas and thus leading to temperature gradient directed outwards the surface. In 

contrast, the developed model predicted existence of the temperature gradient towards the surface. It should 

be pointed out that this model is limited to relatively small temperature gradients due to the limitation of 

the Chapman-Enskog expansion for solving the Boltzmann equation. In a case of a larger temperature 

gradient a more rigorous model is required and only numerical simulations such as DSMC would be able to 

solve the problem.     
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Fig. 2. Normalized u, T1=V1
2, and Backflux at the ablative surface vs. τΤ.    
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Fig. 1. Schematic representation of the layer structure near the ablative surface
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Fig. 3. Comparison of exact and approximate solutions. Polyethylene with the surface temperature of 800 K.  
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Fig. 4. Normalized thermal and directed velocities at the outer boundary of the Knudsen layer as 
functions of ratio of external heat flux to the total heat flux at the ablating polyethylene surface. 
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Fig. 5. Normalized temperature and density at the outer boundary of Knudsen layer as a function of α = u/V1 
with temperature gradient at the Knudsen layer edge as a parameter. 
 


